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Stochastic Optimization for Content
Sharing in P2P Systems
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Abstract—Available resources in Peer-to-Peer (P2P) systems de-
pend strongly on resource contributions made by individual peers.
Empirical data shows that in the absence of incentives, a majority of
the participating peers do not contribute resources. Modeling inter-
actions between individual peers is often difficult as the number of
peers in the system can be very large, and the relationships among
them can be very complex. In this paper, we propose a new solu-
tion for P2P systems, where peers upload and download content to
and from the contributing peers based on agreed-upon/determined
sharing rates. We propose a P2P solution that deters free-riders by
imposing constraints on participating peers; specifically, a peer is
allowed access to new content only as long as its own content con-
tribution exceeds an adaptively set threshold. The constraints are
enforced either by a central authority (e.g., a tracker) or by a decen-
tralized coalition of peers in a swarm, social network, etc. We derive
optimal upload policies for the peers given their estimated future
download requirements and their previous contribution (credit) to
the other peers. Our results show considerable improvement in the
cost-benefit tradeoff for peers that deploy such an optimal policy
as compared to heuristic upload policies. We also propose mecha-
nisms based on which the coalition of peers can provide incentives
or penalties to participating peers to adjust their policies such that
the availability of content and/or number of peers contributing
content is maximized.

Index Terms—Content sharing, optimal upload policies, re-
source contributions in P2P networks.

I. INTRODUCTION

ONTENT distribution through Peer-to-Peer (P2P) net-

works has recently gained widespread popularity as it
provides a distributed framework that is ideal for the dissemina-
tion of large files such as multimedia data and software programs,
without relying on a dedicated infrastructure (content servers,
networks, etc.). Deploying a set of dedicated servers for the
purpose of distributing content to many users is inefficient and
prone to failures and congestion. Another advantage of P2P
networks is their scalability, as available resources scale with
demand [15]. While file sharing (downloading) is the predomi-
nant activity on existing P2P networks, telephony, live broadcast
and streaming multimedia P2P applications are also emerging
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[1], [2], [5]. Furthermore, P2P networks have also been used to
provide support for distributed directory services, storage, and
grid computation.

While earlier research on P2P networks has focused mainly
on system design, efficient streaming techniques and traffic
measurements for real-time applications [21], [22], several other
important issues pertaining to the evolutionary dynamics (i.e.,
upload-download) of these networks have also been recently
examined [3], [14], [17], [18]. Since the functioning of a P2P
network depends on the resources (content) contributed by
participating peers, it is essential to ensure that peers who benefit
from the network also contribute to it [2], [3]. Central to the suc-
cessful evolution and stable behavior of a P2P system is the issue
of providing incentives (and sometimes imposing constraints) to
the participating peers to contribute resources, i.e., upload con-
tent, as otherwise “the tragedy of commons” becomes inevitable
[20]. This topic has been extensively investigated [3]-[9], [14]
and proposed solutions range from microeconomic payment
mechanisms to providing differentiated services for peers based
on their prior contributions to the P2P network.

Currently, two types of P2P system architectures exist [15]:
a partially centralized system, referred to as a tracker-based
system, and a fully decentralized system, referred to as a tracker-
less system. In tracker-based systems, a “tracker” (a central di-
rectory server) facilitates communication between peers, while
in trackerless system [25] relevant content is tracked by the
“swarm” of peers in a distributed manner. A “swarm” is a group
of connected peers that share one or more content items in which
they are interested. In the remainder of the paper, we will use the
terms “swarm” and “coalition” interchangeably. Note that coali-
tions can be formed using rules that consider the specific char-
acteristics of the peers, i.e., upload bandwidths, content avail-
ability, content interests etc. In this paper we do not investi-
gate such coalition formation and peer matching, but details
on these issues may be obtained from [31]. Nevertheless, both
system architectures need to deploy explicit upload-download
policies and provide incentives to participating peers to prevent
them from becoming “free-riders.” For instance, several current
P2P systems employ a simple differentiated services model that
stipulates that the amount of data a peer is allowed to down-
load is proportional to the amount of data that it has already
uploaded [3]. More sophisticated differentiated service models
can be constructed by taking into account upload/download ca-
pabilities, computational resources, disk-space, and value of the
content as perceived by the various users. For instance, the value
of content [4] may increase based on whether it is semantically
important (popular) or if its availability is restricted to only cer-
tain limited locations on the P2P network. However, in such
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systems (e.g., BitTorrent [3]), no centralized resource allocation
strategy exists and each peer is responsible for maximizing its
own utility (download rate, percentage of accepted downloads,
etc.). In [3], peers do this by downloading from whomever they
can and deciding which peers to upload to using a “tit-for-tat”
strategy. Hence, peers decide to cooperate by contributing their
resources and not to cooperate by denying download requests
temporarily from other specific peers. These upload and down-
load algorithms are not part of the protocol, however, as men-
tioned in [3], effective upload and download policies are nec-
essary to ensure the welfare of each peer and also the overall
benefit and growth of the network. Game theory has also been
deployed to model peer behavior in noncooperative P2P envi-
ronments [24]. However, this work is mainly aimed at showing
that, at the Nash equilibrium, free-riders are prevented from
joining the P2P system, and not at developing operational con-
tent sharing strategies for the various peers. In contrast with is-
sues such as equilibrium characterization, we aim at describing
and improving the dynamic behavior of peers. Our main interest
lies in understanding the emergent behavior of interacting peers
that use simple adaptation rules to sequentially adjust and opti-
mize their upload/download strategies. The outcome of these in-
teractions need not converge to equilibrium, i.e., perpetual adap-
tation of strategies may persist. These interactions may involve
a large number of peers, which continuously adapt their strate-
gies based on several parameters such as their content demand
etc. Hence, from the perspective of any single peer, the P2P en-
vironment is nonstationary. This unfortunately inhibits strategic
optimization and convergence to equilibrium through repeated
interactions. In this paper we focus on developing solutions that
allow individual peers to determine the amount of resources
they should contribute (e.g., uploaded content) to other peers
in the P2P coalition or swarm [16], [28] to ensure that they can
download content from other peers when desired in a dynamic,
nonstationary setting. At the same time, expending resources
that significantly exceed the necessary amount for download, is
wasteful and needs to be avoided. Additional challenges arise
due to the stochastic nature of a peer’s download requirements.
Note that this problem has many similarities with inventory
management [11] especially with uncertain model distributions,
and we will discuss how some of those solutions may be adapted
in this case.

Content and resource sharing among peers may be modeled
as a noncooperative interaction between rational decision
makers. This model enables the study of simultaneous upload
and download policies for a subset of network peers that maxi-
mize their own payoff noncooperatively. For instance, in [8], a
system with multiple peers sharing multiple content resources
has been modeled as a Markov chain, and the evolution of
the system is analyzed numerically. However, this numerical
method is beset with difficulties that arise due to the exponen-
tial growth of the number of states and the attendant increase
in the required computational power and memory, thereby
necessitating a sub-optimal solution.

In this paper, we consider an alternative approach where, in-
stead of tracking interactions among sets of peers, we view the
content upload-download of individual peers solely in terms of
their interaction with an abstract “environment” (that physically

includes other peers in a swarm). To prevent free riders, we
assume that participation in a swarm of peers is allowed only
if each peer agrees to maintain certain content sharing ratios,
i.e., upload versus download fraction [16], [28]. These content
sharing ratios are set based on the upload and download be-
havior of individual peers. Enforcement is performed either by a
tracker, or collectively by the coalition of peers in the distributed
tracker-less scenario.

We focus on developing optimal upload-download poli-
cies for individual peers in terms of the amounts of content
(resources) they contribute to the coalition, and content they
receive in return, given their specific content sharing ratio.
Specifically, we study the problem of determining optimal
upload strategies for individual peers, given estimates of their
future content needs (download requirements), previous contri-
butions, and their sharing ratio. We formulate this as a stochastic
optimization problem and determine a closed form solution.
The derived optimal upload strategy depends on the peer’s
intrinsic characteristics, and peer tunable parameters such as
its desired service level and its level of altruism. We measure
service level in terms of the expected shortfall of content that
a peer experiences in response to its demand (measured as a
fraction of the demand). Peer altruism is characterized by the
willingness of the peer to upload more content than necessary,
while satisfying its requirements. Our proposed solution for
upload-download is not dependent on the specific peer selection
policy as in [5], [8]. As we will see in the following sections,
this abstraction of individual peer interacting with the outside
enables us to derive optimal sharing policies analytically, under
a general set of assumptions, thereby allowing the deployment
of the proposed solutions across a variety of existing P2P
systems and applications.

We then study the design of optimal sharing constraints such
that peers are provided incentives to upload and download con-
tent and maximize the overall P2P system benefit. It should be
noted that this paper is aimed at studying possible resource ex-
change strategies and system interactions in a general manner,
and does not aim at providing a complete implementation
framework for a P2P content distribution application. However,
the proposed solution can be deployed in a variety of P2P sys-
tems [1], [3], [15], [23] to derive optimal upload policies for a
variety of applications. We demonstrate the performance of our
algorithms by deploying them in a real P2P system architecture
that is based on BitTorrent [26]. We use this implementation
to present results on the content upload-download behavior,
clustering of peers based on upload rate as well as altruism, and
built-in deterrents to free-riders. The main contributions of this
paper are as follows.

* Optimal resource exchange strategies for individual peers.
We derive optimal upload policies for each peer given its
estimated future download requirements, its previous con-
tribution, and its desired level of service.

» Imposing constraints and providing incentives. We de-
termine what incentives, in terms of the sharing fraction,
can be provided to individual peers based on their up-
load/download behavior to maximize the overall coalition
benefit (total amount of uploaded and downloaded con-
tent). Our solution differs from other incentive mechanism
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research for P2P systems [3], [9], [16], which are mainly
aimed at deterring free-riding. Importantly, in our system,
the P2P system performance depends not only on the
peers fulfilling their upload requirements, i.e., not being
free-riders or partial free-riders, but also the amount of
data they actually upload/download!. These constraints
and incentives are designed based on the specific peer
behavior.
This paper is organized as follows. In Section II, we describe
our P2P system model. In Section III, we analytically derive the
optimal upload policies for peers given their demand distribu-
tion, and the desired level of service. In Section IV, we describe
mechanisms for sharing ratio and incentive design. We present
several experimental results on a real P2P system deployment
in Section V, and conclude in Section VI.

II. SYSTEM MODEL FOR THE INVESTIGATED P2P SYSTEM

We model the content upload-download of individual peers
solely in terms of their interaction with the “environment” that
physically includes other peers in a swarm or coalition. We as-
sume that the peer interaction with this environment is analyzed
within the context of control intervals. The duration of a control
interval corresponds to the amount of time taken to download an
individual content chunk. A “chunk” is a designated segment
of the shared file with size determined by the content creator
or seeder. The beginning of a control interval corresponds to
the download request for the next chunk of content. In terms of
our formulation and analysis, the notions of control interval and
chunk are conceptually interchangeable, and in the rest of the
paper we use the term control interval for ease of explanation.

In this system model, a peer interacts with the system by ad-
justing the amount of content that it uploads at the beginning
of each control interval to provision for its future predicted de-
mand, given its desired level of service. As in [16] and [19], we
assume that there are always sufficient requests from other peers
to take advantage of the content/resources uploaded by any peer
based on its policy. Of course, the validity of this assumption de-
pends on the specific system, its scale, the available content at
the various peers, and the presence of storage support for up-
loaded resources [16], [26]. In this paper, we will only focus
on the upload/download policy and not on coalition formation,
content negotiation or on content streaming protocols for which
multiple other solutions already exist [4]-[6], [13], [15], [23].

Denote the cumulative amount of content uploaded and
downloaded? by the peer at the start of the nth control interval
(the end of the (n — 1)th control interval, i.e., after n — 1
chunks have been downloaded) by U,, and D,,, respectively.
Let the ratio between the content uploaded and downloaded
be denoted as o, = (U,/D,). This ratio characterizes the
behavior of the peer until the nth control interval, and is labeled
the upload-download fraction or content sharing ratio. The
constraint imposed on each peer is such that the peer is required
to maintain «,, > « for Vn € N7T. As will be shown later
in this paper, a can be adapted depending on the behavior of

IThe value of the content uploaded/downloaded is not explicitly considered
here but it can be easily included in our proposed solution.

2Note that different content data may have different size and hence, can take
different time periods to be uploaded.
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the individual peer or in order to maximize the benefit for the
coalition of peers. Moreover, in the considered P2P system,
we assume that several peers can regularly produce or create
new content or regularly acquire royalty-free content, which
they can then make available online. Furthermore, there exist
service providers such as media companies that often distribute
their content, and serve as the initial content seeders, without
expecting upload from other peers in response. Hence, the total
upload and download in the system do not necessarily need to
be in equilibrium for the system to operate efficiently. Let u,,
denote the amount uploaded by the peer at the beginning of the
nth control interval. Then, the maximum amount of resource
d,, that the peer can download in this control interval can be
determined as

where v = o', Let the state at the beginning of time n be
Sn = ’YUn - D,. (2)

Spn can be interpreted as the savings accumulated by the peer,
and hence (1) can be rewritten as

dn < Sp + Y. S

Uy, can also be interpreted as the resource production of the peer
in the nth control interval, since the peer incurs a cost in terms of
upload bandwidth, or other contributed resources. d,, represents
the consumption/benefit of the peer in the same interval. We also
define the maximum consumption in this control interval as

An = Sp + Ylnp. “4)

a., 1s analogous to the net purchasing power of the peer in con-
trol interval n. Let z,, denote the peer’s desired download in the
control interval n. It is clear that d,, < z,. Importantly, z,, is a
random quantity, since the peer can only estimate what its future
desired download is going to be. The strategy of the peer for re-
source exchanges is characterized by the following parameters.

* 7 is the benefit of downloading a chunk. Note that this ben-
efit could be different for various peers, different down-
loaded content chunks, and can vary over time. For the
ease of formulation, we consider 7 as constant. This is the
case when benefit is expressed in terms of bandwidth or
storage or computational cost rather than content impor-
tance, and a fixed number is assigned to it per chunk. The
proposed formulation can be easily modified to consider
content-adaptive, time-varying benefit. Hence, the net ben-
efit from download for this peer, in the nth control interval
is r(min(an, 2,)).

e ¢ is the per-unit cost3 of uploading, which can be deter-
mined as a composite function of the upload-bandwidth/
storage/consumed power etc. As was the case for the ben-
efit, we consider fixed ¢, and the proposed formulation

3The cost and benefit parameters are determined specifically per peer, to in-
dicate the different value different peers may place on the same underlying con-
tent. Additionally, these parameters may be determined on the fly to account for
the popularity and quality of content being exchanged. While we do not explic-
itly investigate algorithms to tune these parameters dynamically, such tradeoffs
can be implemented in the considered P2P architecture.
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can be easily modified to consider content-adaptive, time-
varying costs. The net cost incurred by the peer in the nth
control interval is cu,,.

* In case the desired download exceeds the maximum al-
lowed download, p is the per-unit penalty for not having
sufficient resources (upload) to fulfill the desired level of
downloads. The net penalty is p(max{z,, —a,,0}). The pa-
rameter p controls the service level of the peer, i.e., a high
value for p corresponds to high penalties for not uploading
the desired amount, thereby requiring the peer to upload
enough to support its download needs. We will show later
how this parameter can be determined by the peer given its
desired service level.

* Conversely, if at the end of the nth control interval, the
amount uploaded exceeded the minimum required to
satisfy the desired download (an4+1 > «), the policy
leading to this situation is also penalized, as the peer con-
tributed resources without deriving an immediate benefit,
thereby wasting resources. The incurred penalty equals
h(max{a, — zn,0}). Since the current amount uploaded
minus the amount downloaded is carried over to the next
time interval, the incurred excess cost may be viewed as an
insurance against future contingencies. However, when the
parameter p is selected to meet the desired service level,
the parameter h may be viewed as an altruism parameter.
Altruism represents the willingness of the peer to upload
more data than required. Hence, an altruistic peer is one
that minimally penalizes excess upload, i.e., an “ideal”
altruistic peer is one with h — 0, while an “ideal” selfish
peer is one with i, — oo [16]. As will be shown later, this
will also have an impact on the service level that the peer
can derive from the system.

Note that while the parameters r and c are intrinsic to the
peer (e.g., determined by its connection to the network, etc.),
the parameters p and h are peer-tunable based on their desired
service level, and altruism.

If we denote T = max{z, 0}, the state that the peer evolves
to after the nth control interval is

Sp+1 = max{ s, + Yu, — 25,0} £ (an — 2n)7" 5)

where s; is the initial state of the peer. This state could be as-
signed to the peer by the system, or it could depend on the type
of content or resources the peer can contribute to the system as
opposed to the other peers. Based on the above model, we de-
fine the one-step utility function that needs to be considered by
the peer in determining the optimal resource exchange policy

Jn(anaznvun) = T(Inin{anvzn}) — ClUn
—p(2n — an)t = h(an, —2,)T. (6)

Fig. 1 illustrates the dependence of the utility function on these
different parameters for one control interval. As shown in the
figure, within one control interval, the maximum utility a peer
can derive is (r — ac)z, which is achieved when the amount up-
loaded is just enough to enable the desired download, given the
system constraints. Also, a penalty p is imposed when u < az,
and another penalty A is imposed when u > «z. Individual
peers expect to stay in the system over an extended time, and

J(u,z)

(r-ac)e

Slope —y(h+ac)

v

Slope 7(r +p- ac)

v

Fig. 1. Utility function given z and s = 0.

participate in many upload/download sessions. Hence, instead
of considering an instantaneous utility function, the peer upload
policy decision is based on the utility function aggregated over
some number N of future intervals, thereby provisioning for
possible future content downloads in intervals beyond the cur-
rent one. The parameter N, labeled the planning horizon, con-
trols the tradeoff between short and long-term behavior of the
peer. Hence, we can rewrite the utility function as

N

J(N,s1) = Zﬂ"‘lJn(an,zmun) @)

n=1

where 8 (with 0 < § < 1) is a discount factor that favors
short term gains over long-term gains. The goal of the peer’s
resource contribution optimization is then to determine appro-
priate values of wu,, to maximize the expectation E[J(N, s1)]
over all possible realizations of z,.

III. OPTIMAL UPLOAD STRATEGIES FOR THE PEERS

Equation (7) can be solved for u,, using dynamic program-
ming [10], [11], [19]. However, by an algebraic transformation
of the model described by equations (4)—(6), it is possible to sup-
press the temporal component of the model and determine one
control interval optimum that is also optimal for the problem
with planning horizon N. Such solutions are known as myopic
optima in operations-research literature [11], [19]. Specifically,
from (5)—(7) by substituting u,, = a(a, — s,), we get

N
J(N,s1) = acsy — Zﬂ”_l{(ac —1)an +p(2n — an) T

n=1

+(r+h = fac)(an —2,) T} + BNacsny1.  (8)

The identity min{z,y} = x—(x—y)* was used while deriving
(8). At the end of the planning horizon N, the peer accumulates
a total saving sy41, that is finite upper bounded, i.e., 3¢ <
oo such that sy41 < &, for any rational peer. Since § < 1
and acsy 41 is upper bounded, then AN acsy 1 — 0as N —
oo. Hence, for a long enough planning horizon, it is possible to
discard the last term in (8). s; is the state at the beginning of
the planning horizon and is not affected by the upload policy.
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Therefore, we can rewrite J(s1) explicitly as a function of s;
while eliminating the dependence on N. If we define
W(an, 2n) = (ac —1)an + p(z, — an)™

+(r +h — pac)(an —2z,)T  (9)

then we can obtain
E[J(s1)] = acsy —E[>_ " w(an, 2,)].  (10)
n=1

Under the assumption that z,,’s are independent and identically
distributed (i.i.d.) random variables, it can be verified that a,,
and z,, are also independent. Therefore,

Elw(an; zn)] = E[E[w(an; zn)|an]]. (11
Let
G(a) = Elw(a,z) | a]
= (ac—1)a+pE[(z —a)T]

+ (r +h — Bac)E[(a — 2)T]. (12)

From (10), (11), and (12), we have
E[J(s1)] = acs; —E | Y "' G(an) (13)

n=1

The existence of an optimal policy, corresponding to an optimal
net purchasing power in every interval a*, and the method to
determine it are given by the following propositions from sto-
chastic inventory theory [11], [19].

Proposition 1: There exists a* > 0 such that G(a*) < G(a)
for all a > 0.

Proposition 2: 1If s; < a™, then a,, = a*Vn is a feasible and
optimal solution.

We omit the proofs here, as these are derived based on [11],
[19]. We can then adapt these results from inventory manage-
ment theory, to determine myopic optimization policies for our
problem. Specifically, the optimal a* can be determined as fol-
lows. We first rewrite (12) as

G(a) = /Ooo(ozc —7r)a+p(z—a)t

+(r+h—Bac)(a—2)TdFz(z) (14)

where Fz(z) is the cumulative distribution function of the de-
sired download z. We can show that G(a) is convex in a when
7 + p > ac. Expanding these terms, and taking derivative with
respect to a, we can obtain the optimal a* that minimizes G(a)
as

r+p—ac
r+p+h— Pac
with 7+ p > ac. The optimal a¢* as determined from (15) is not
necessarily unique when Fz(z) is not strictly increasing with z.

In that case, we pick a* as the smallest value of z that satisfies
this condition, i.e.,

Fy(a*) = (15)

" . r+p—ac
= k() > ——————— 16
a mm{z (2) > r+p+h—ﬂac} (16)

to obtain a unique solution.
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Since a,, = s, + Yu, is interpreted as the net purchasing
power, Propositions 1 and 2 along with (14) determine that the
optimal policy is to maintain the consumption power at the
prescribed level given by (16). This is achieved by uploading
the quantity u,, during each time period. Note that this result
is stronger than the one sought, i.e., minimization of (13).a*
not only minimizes (13), but does so along every sample path
G(ap).

Recall that s1, the initial state is a constant and is not affected
by the upload policy. The optimal strategy in the case when s; >
a* is somewhat more involved due to the constraint u,, > 0[10],
[11], [19]. However, it can be shown that if s; > a*, the optimal
policy is u,, = 0for1 < n < M and a,, = a* forn > M,
where M denotes the number of control intervals until the state
falls below a*, i.e.,

M:inf{n: (sl—Zzi) Sa*}.
i=1

This means that no upload is needed in the periods up to and
including those for which s,, > a* and the peer should follow
thereafter the optimal upload policy under the case s; < a*.
Note that M € N7 is a random variable that depends on the ini-
tial state and the desired downloads during each period. Based
on this and Proposition 2, we can determine the optimal upload
policy in the general case as

7)

v = max{a(a* - s,),0} VYn e NT. (18)

In order to illustrate the benefits of the proposed approach,
we compare the optimal policy with a heuristically determined
policy. The heuristic policy assigns a,, = p for all n, where ;1 =
E[z,] is the mean of the desired download. Since the allowed
download is at most a,,, the policy a,, = u can be considered as
the first order approximation of the optimal strategy. Alternative
policies can be constructed by taking into account the higher
moments of the distribution of z,,. To illustrate the results of the
proposed policy, we assume that the download function z,, is
distributed according to

a) an exponential probability density function (pdf) with

mean y, ie., fz(z) = (1/p)el=*/1); 2 > 0;
b) a uniform pdf with mean p and spread 26. i.e., fz(z) =
(1/28);p =6 <z < p+6.
These two distributions correspond approximately with ex-
pected content chunk download sizes for multimedia content
under different settings. For instance, when peers download and
exchange personal multimedia content (content authored by
users), the chunk sizes are likely to follow an exponential dis-
tribution as in [17], i.e., most chunks having small sizes (short
duration, poor quality, etc.), and very few examples with large
sizes. As opposed to this, when peers download and exchange
more conventional content, e.g., MP3 files for popular music,
the chunk sizes are likely to be uniformly distributed. For both
these distributions, we have unique solutions for a* (as Fz(z)
is a strictly increasing function of z) that can be computed as
" —a* T+ p—ac
Fz(a*)=1-¢ Ry — or
r+p+h— Pac
h+ ac(l =)

a* = pln
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Fig. 3. Expected utility function E[J(sy)] and G(a) with uniform pdf for the desired download.

for exponential distributions and

o0 = (n=8) _ r+p-ac
F = =
z(a) 26 r+p+ h— Pac o
r+p—ac

fopu—6+20 | ———m————
“ a + r+p+h— Pac

for uniform distributions.*
Fig. 2 depicts several results with the parameters s; = 5, 3 =
0.5,r=1,c=1.5,h = 0.2, 4 = 5,p = 1.55, and an exponen-

Withp — 6 < a* < p+6.

SNote that these absolute values of the parameters are used purely as illustra-
tion. The relative values of these parameters characterize the nature of the peer,
e.g., whenr/c < 1 it costs the peer more to upload one chunk as opposed to the
benefit it derives from one downloaded chunk. In the remainder of this paper we
use similar illustrative values for these parameters. These may easily be mapped
onto real costs and benefits.

tial pdf for the desired download, for several different values of
a. We can repeat this experiment to determine the utility func-
tion with a uniform pdf for the download function z,,, while
keeping unchanged the other parameters, and the resulting func-
tions are shown in Fig. 3.

From Figs. 2 and Figs. 3, we can observe that the selected op-
timal upload policy leads to significantly higher utility E[.J(s1)]
as opposed to the heuristic policy. Furthermore, the advantage
of the optimal selection increases with decreasing «.. In Section
IV-D, we will investigate the impact of the upload policies on
the video quality that can be derived by a participating peer.

We now revisit the model to examine the effect of changing
the parameters % and p since these parameters are determined
by the peer, based on its altruism, and its desired service level.
Fig. 4 highlights the effect of changing % on the cumulative up-
load and download. As expected, with increased &, the amount
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Fig. 4. Effect of changing h on the excess cumulative upload-download frac-
tion E[(a,,/a) — 1].

of over-provisioning reduces, i.e., the ratio of upload to down-
load approaches the required «.. Note that the heuristic policy is
not affected by the selection of h.

The parameter p can be used by the peer to control the de-
sired level of service. The service level is determined by the
amount of data that the peer receives in response to its demand,
i.e., whether the peer’s demand is met or not, and if it is not
met, how much the shortfall is (because peers are assumed to
derive benefit r min(a*, z,,) even from partial data download).
The expected amount of the shortfall in peer demand per control
interval, given that a shortfall has occurred, can be determined
as

19)

Bl - ")) = [ (e - ) f2(2)dz

which is pe=(*"/") for an exponential distribution and (n+
§ — a*)?/46 for a uniform distribution (when y — § < a* <
i + 6). The corresponding probability of observing a shortfall
in a specific control interval is

P(z>a")= /fz(z)dz —1—Fz(a"). (20)

Based on the above, the expected shortfall of data that the peer
receives in response to its demand can be computed as F[(z —
a*)T]P(z > a*), and we define the desired service level as a
fraction

El(z —a*)T|P(z > a*).
I

K= (21)
Different values of parameter x correspond to different levels
of service, with kK = 0 corresponding to the highest level of
service, and increasing x corresponding to decreasing service
level. Hence, given k, the parameter p can be determined by the
peer using the relationship

+
_ +p—ac
- E B _r¥p-ac
Hr <Z z <r+p+h—ﬂac>>
r+p—ac
l—-—F]. (22
X( r—}—p—I—h—ﬂac) @2)
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Since Fz(z) is monotonically increasing in z (for both expo-
nential as well as uniform distributions), the parameter p can be
uniquely computed by the peer. For an exponential distribution,
we can rewrite (21) as

h+ ac(l—p) )2 (23)

e <r+p+h—,[3ac

which leads to a solution for p as

1 ac 1
=h|—=-1 — = — =1 -7 24
P L(\/E >+\/E ﬂac(ﬁ > rooey
Similarly, for the uniform distribution, we can rewrite (21) as

b [((h+ ac(l — [3)))]3

uwl(r+p+h—pPac

(25)
and we can solve for p appropriately.

IV. DYNAMIC ADAPTATION OF UPLOAD-DOWNLOAD FRACTION
BASED ON P2P SYSTEM IMPOSED CONSTRAINTS

The previous section discussed how to determine the optimal
upload policy given the constraints imposed by the P2P system
(the tracker or coalition of peers) in terms of the upload-down-
load fraction «. In this section, we focus on how the optimal «
can be set for different peers.® As mentioned earlier, we assume
that the goal of the coalition is to maximize the total amount of
content chunks uploaded and downloaded by the various peers.
However, to be able to determine the appropriate optimal up-
load-download fraction for each peer, the coalition needs to be
able to predict the peer behavior in terms of the amount of data
it will upload and download” in response to any setting of «.

The peer parameters r and ¢ (benefit and cost) are determined
by the peer’s connection to the network, its set of available re-
sources, desire for requested content etc. and are known by the
system. However, the peer can modify parameters £ and p based
on its altruistic nature as well as its desired level of service. In
general, the peer may not want to explicitly expose these pa-
rameters to the coalition. In such cases, the P2P system can
infer these parameters from the observed peer behavior. Specif-
ically, the coalition is aware of the optimal upload policy a*, as
this is the net purchasing power the peer attempts to achieve
with its upload in every control interval. Furthermore, given
that the coalition is aware of the peer’s content demand, and
to what extent it is satisfied, it also can easily estimate the ser-
vice level of the peer x as well as the excess cumulative up-
load-download fraction E((ay,/a) — 1). Given the estimated
k,a*, and E((a,/a) — 1), and observations of peer behavior
with changing «, the P2P system can solve a system of (non-
linear) equations to estimate the parameters h and p of the peer.

6In this section we include discussion only for peers with an exponential dis-
tribution for their demand, it is straightforward to extend this to include peers
with a uniform distribution for their demand.

TWe consider the total upload and download of a peer rather than only the
total upload, as it is in the interest of the coalition that each peer is downloading
sufficient content, which can subsequently be used by other interested peers. In
this way, over time, each peer can become a seeder for various other peers for
different types of content.
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Fig. 5. Effect of mean demand, service level, and upload factor on total download and upload of that peer across various control intervals.

A. Estimation of the Peer’s Download and Upload

Given these estimates of the peer’s parameters, the expected
amount of data downloaded E[D] by the peer in any one control
interval, in the steady state, can be computed as

E[D] = E[D|z > a*]P(z > a*)
+E[D|z<a’](1-P(z>a))

a

=a"P(z>a")+(1—-P(z> a*))/zfz(z)dz.
: (26)

Hence, a simple estimate for the total amount of data trans-
ferred by the peer can be computed as (1 + «)E[D]. For

an exponential distribution of the content size, F[D] can be
computed as
E[D] = a*e” " + (1 — e_aT) (u —(a* + u)e_aT) )
27
Examples of the impact of service level and upload factor on
total download and upload, both actual as well as estimated, of
a peer is shown in Fig. 5. The results in this figure show that
depending on the mean demand as well as the service level pa-
rameter (x) peers upload and download different amounts or
content. As expected, peers upload and download more content
with increasing 1 and decreasing «. Furthermore, it is clear that
actual download and upload behavior closely follows the pre-
dicted behavior. In order for the coalition to provide incentives
to peers, it needs to estimate the current demand and service
level that the peer requires.
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B. Peer Response to Incentives

Given the imposed upload-download fraction o, peers deter-
mine how much content they are willing to download (mean de-
mand p) and what level of service they are willing to accept (k
and correspondingly p). Note that this is done to maximize the
utility derived by the peer. In order to investigate the relation-
ship between utility and i, and ~, we rewrite the peer’s utility as

BUG]
= acsi — Y "7} ((ac = )a” + pE[(z — a*)*]
o+ ;Z:—lﬂac)E[(a* -2)"]) 29
or BLI(s1)]
= acsi — Y "7} ((ac - )a” + pE[(z - a*)*]
(4 h= faoa” — = Bl —a)])  (9)

since E[(a* —2)*]+ E[(a* —2)"] = a* — pu, E[(a* — 2)T] =
—E[(z—a*)"],and E[(a* — 2)7] = —E[(z — a*)T]. Thus, we
can rewrite E[J(s1)] in terms of «, i, and k as

E[J(s1,a,k,p)]

DR < s pus
= acsy nz_:l,[} <(ac r)a +7P(2>a*)

+ (r+ h — Bac) (w-wﬁ)). (30)

For an exponential distribution, we can show that Kk =
e~(2a"/m) = (P(z > a*))? and hence, we have

E[‘](Sl’ Q, K, H’)]

oo

= acsy — gt <(ac —r)a” + PR
1 nzz:l Y

+ (r+ h — Bac) (a*—u—%)).

Furthermore, we can also substitute for ¢* and p to obtain the
dependences of the utility function only on «, i and ~. An illus-
trative example of the utility function and coalition benefit for

€29
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r=15c=15

(8

"

Example of the coalition benefit (left) and utility function (right) for a particular peer.

a particular peer (with r = 1,¢ = 1.5, h = 0.5) is depicted in
Fig. 6.

Note that the amount downloaded and uploaded tends to in-
crease with increasing p and level of service. Hence, for the
coalition to increase its benefit, it needs to induce a peer in this
direction through the appropriate selection of upload-download
fraction . However, peers change their desired level of service
x and their desired amount of content only if their expected
utility function E[.J(s1)] increases.

From Fig. 6, we see a general trend that the peer utility in-
creases with increasing p for « = 0.6 and higher values of
£(>0.1), as both these determine the amount of content that
the peer needs to upload to satisfy its demand (increased upload
requirements negatively impact the utility). Furthermore, when
a = 0.9, the peer utility increases with decreasing ( (e.g., for
x = 0.1,0.01), thereby leading to reduced overall coalition ben-
efit in terms of the amount of data uploaded and downloaded.
Hence, it is not always obvious which parameter selection «
will lead to the peer increasing its upload and download.

C. Selection of Optimal Upload-Download Fraction

In general, it may be observed that increasing « makes it
more difficult for peers to increase their demand or level of ser-
vice, while decreasing « causes the coalition benefit to diminish.
Hence, the coalition needs to tradeoff these conflicting goals and
select a given the type of peers in the coalition. In general, this
optimization problem can be written as

?

(32)

a®?' = arg max,, (1 + o) E[D(a, £°P", u°P")]

{ROP, 4P} = arg max,, E[T(s1, a, . o).

The optimization clearly consists of the two components: an
optimization by the peer to maximize its utility, and an opti-
mization by the coalition to maximize the amount of upload
and download?®. Given that these functions are nonconvex, we
cannot solve this optimization analytically. Instead, we use a dy-
namic programming based approach. Note though that such an
approach is not likely to be very expensive, as typical peers have

8Note that there are several other ways of combining these two contrasting

objectives into one utility for optimization, that lead to different behaviors, fair-
ness etc.



VAN DER SCHAAR et al.: STOCHASTIC OPTIMIZATION FOR CONTENT SHARING IN P2P SYSTEMS

Utility Function with «°®* and ! given c

141

opt opt

Expected total upload/download with «

and p°*" given o

(1 +o)E[D(er, kP!, noP)

Fig. 7. Optimal utility and upload-download peer behavior given a(r = 1.5,¢ = 1).
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Fig. 8. Optimal utility and upload-download peer behavior given a(r = 1,¢ = 1).

only a certain discrete set of demand levels, and desired service
levels, reducing the size of the search space. Importantly, the
tracker (either centralized or the coalition as a whole) can infer
the behavior of the peer, and can then determine the parameter
a°Pt appropriately to increase the peer’s upload and download,
such the overall P2P system benefit is maximized. Examples of
the utility function and expected download upload with opti-
mally selected (by peer) « and p for different values of o and h
are shown in Fig. 7.

In Fig. 7, we consider peers with potential greater benefit of
downloading one unit of data as opposed to the cost of uploading
one unit of data (r > ¢), and with different altruism parameters.
Also, we consider the service level parameter to lie in the range
0.01 < Kk < 0.25 and the mean demand level to lie in the range
3 < p < 10, with a start state s; = 3. The first thing to observe
is that the optimal peer utility steadily decreases with increasing
« until a certain point beyond which it increases suddenly be-
fore continuing to decrease. This sudden transition corresponds
to the peer moving from one service level to another (increasing
K, thereby reducing service level). At the transition point, it is no
longer optimal for the peer to maintain a high service level (small
k) as its upload demands increase beyond any gains it receives
from the download, and therefore it needs to reduce its service
level. Conversely, the total amount of upload and download in-
creases with increasing «, until the same point (change of ser-

vice level) beyond which the trend continues. Additionally, the
exact location of the transition point changes with the altruism
parameter h. As the peer becomes more altruistic (h — 0) the
transition point moves further to the right,? i.e., the peer is more
willing to accept a higher upload-download fraction «. We also
repeat these experiments for peers with r = ¢ = 1 and the re-
sults are presented in Fig. 8. Similar observations as for the pre-
vious case can also be made in this case. Additionally though itis
clear that as the benefit for the peer decreases, its transition point
moves quicker to the left, i.e., the peer can tolerate only small in-
creases in « before changing the desired service level. In fact,
when the peer altruism parameter is high, the coalition needs to
compel (by selecting a high value for a high) the peers to upload
alarger fraction of their download to be able to increase the total
upload-download. Based on these observations, the Pt that the
coalition needs to select, in order to maximize total download
and upload, for peers with different behavior can be summarized
in Table I. As expected, Table I shows that as it becomes more
expensive for peers to upload data, they require a smaller °P*
to contribute more resources to the coalition. The exact value of
the optimal upload-download fraction depends on the selected
ranges of the parameters, and the expected peer behavior. Given
a°P*, peers operate with the optimal upload-download policy in

9Note that the first transition point for # = 1.0 and A = 1.5 are not on the
plot, due to the range of selected « values.
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TABLE I
SELECTED «°P* FOR DIFFERENT PEER BEHAVIOR WITH (t°P* AND k°P*
h=0.1 h=02 h=05 h=1.0 h=15
r=15,c=1 0.55 0.45 0.35 0.55 0.3
r=1,c=1 0.35 0.25 0.1 0.2 1.0
r=1,c=15 0.2 0.15 0.1 0.15 1.0

terms of maximizing their individual utilities. It is also clear that
extensions of the above approach that consider a joint function
of the coalition benefit and peer utility while determining «°P*
can also be easily developed.

V. ILLUSTRATION FOR VIDEO P2P SYSTEMS

To illustrate the potential impact of the proposed content
sharing policies on multimedia P2P networks, we used a P2P
set-up based on [26] (using the PlanetLab platform), which
was developed using an instrumented version of the BitTorrent
implementation. The deployed implementation is able to record
the necessary upload/download statistics required to assess the
performance of the proposed algorithms.

We deployed 30 peers (leechers) belonging to three classes
corresponding to different maximum upload rates (i.e., 20 kbps,
50 kbps, and 200 kbps). These client classes, determined based
on the upload bandwidth, are identical to those used in [26].
Bandwidth limitations were enforced by imposing rate con-
straints on the deployed PlanetLab nodes. All peers, however,
have the same download rate of 1 Mbps, and deploy the optimal
upload strategy as designed in this paper. Using a simple linear
relationship between the upload and download bandwidths, we
may then compute the cost-benefit ratios for these different
client classes as 50, 20 and 5, respectively. Note that other
ratios, based on the actual utility derived from content, may
also be used. Peers exchange video files, at CIF (352 x 288)
resolution and 30 frames per second, encoded in a prioritized
manner using H.264 with data partitioning, with a maximum
bit-rate of 1 Mbps. During each experiment, a single video file
of approximate size 100 Mbits!? was downloaded by the peers
from one content seeder. The video file was partitioned into
chunks that have size uniformly distributed around a mean of
100 Kbits. We implemented a simple chunk download algo-
rithm that first downloads chunks having the highest impact on
the video quality. We assume that peers do not change their
available upload bandwidth, or disconnect before receiving
a complete copy of the content. All peers (leechers) join the
torrent at the same time, emulating a flash crowd scenario. In
this practical experiment, we set the sharing fraction « = 0.5
for all peers, and do not modify it dynamically.

We make several very interesting observations based on
these practical experiments. First, we implemented a reputa-
tion-based system similar to [30] to determine whether peers
fulfill their upload requirements according to their determined

10This corresponds to ~100 s of video encoded at this rate. Typical MPEG
test sequences are 10 s long, and were looped 10 times to get this approximate
size.

content sharing fraction. Based on our experiments, we see that
in all cases, peers that do not fulfill their sharing fraction are
always choked (not provided content) by other participating
peers. Furthermore, this choking happens in less than a quarter
of the time required for the total download, thereby ensuring
that free-riders are not able to download the content fully, and
also preventing them from decoding a reasonable video quality.
Specifically, for our example video files, the last free-rider
is choked within at most 258 s of the start of download (the
mean time to download is ~1480 s). Thus, free-riders cannot
successfully manipulate the coalition of peers as in e.g., [29].
Second, similar to [26], we observe that given a set of peers with
a similar altruism factor, peers cluster based on their upload
capacities. This may be explained by the choking policies used
by peers in this system, which encourage high peer reciproca-
tion by favoring peers that upload a large amount of content.
Hence, the unchoking of peers happens more frequently for
peers with similar upload capacities because they are able to
reciprocate with high enough rates [26]. Third, if the altruism
factor differs for the various peers, we observe significantly
different peer-clustering behavior from that observed in [26].
Specifically, peer clustering is no longer determined purely
based on the peer upload capacity, but instead, it also strongly
depends on the peer altruism characteristics. This effect is
stronger in our system because the proposed upload strategy
depends heavily on the altruism (4) of the peer. We perform an
experiment where 20 peers with the same upload capabilities of
200 kbps interact with each other to download content. Of these
peers, 10 have an altruism factor A~ = 0.2 (more altruistic) and
the other 10 have an altruism factor A = 1.5 (less altruistic),
respectively. We observe that the altruistic peers are able to
download content almost twice as fast as the nonaltruistic
peers (i.e., an average of 1219 s as opposed to 2086 s averaged
across all peers over three simulation runs in which the peers
fully download the entire content). A similar result has been
observed in [29] for a more sophisticated P2P system called
BitTyrant. However, as opposed to the BitTyrant system where
the strategic behavior of peers is unpunished, in the proposed
system, the coalition of peers in the swarm will choke the peers
that do not fulfill the agreed-upon upload/download ratio. This
imposes greater emphasis on the altruism of peers, and also
provides long-term incentives for peers to be altruistic.

Finally, we also determine the amount of decoded content
(rate and video quality) for the three different client classes
given the parameters = 0.5,h = 0.2, and » = 1 for all
clients, and costs ¢! = 50,¢? = 20 and ¢ = 5 corresponding
to their upload-download bit-rate ratio. We consider three
different types of video content, represented by the well-known
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TABLE II
EXPECTED DECODED VIDEO QUALITY
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Decoded Video Quality in PSNR (dB)
Mean Download Stefan Foreman Coastguard
r=1, c¢' =50 74.2Mbits 31.4 38.2 32.6
r=1, c¢*=20 86.8Mbits 32.8 38.8 33.6
r=1,c¢*=5 95.6Mbits 33.9 39.2 34.4

Stefan, Foreman and Coastguard sequences. The average down-
loaded content (in terms of bits) and corresponding decoded
quality after 1000 control intervals (approximate number of
total chunks) are presented in Table II. From these results, it
is clear that the client with the lowest cost-to-benefit ratio can
download the most chunks, representing not only the base-layer
quality, but also the enhancement layers, thereby obtaining the
highest decoded video quality. Note that the use of nonoptimal
upload-download policies can lead to significantly reduced (up
to 30—40% lower) downloads, thereby significantly affecting
the video quality.

VI. CONCLUSION

In this paper, we analyze the problem of designing optimal
content upload policies for individual peers in the presence of
constraints, represented by an imposed upload-download frac-
tion or sharing ratio. We use stochastic inventory management
techniques to formulate this as an optimization over a certain
planning horizon. Using an algebraic transformation, we derive
a closed form solution for the optimal upload given the distri-
bution of a desired future download. We also determine the de-
sign of the optimal sharing ratio for a client, in order to pro-
vide it incentives such that the total amount of uploaded and
downloaded content in the P2P system is maximized. In the dis-
cussed P2P system, performance depends not only on the peers
fulfilling their upload requirements, i.e., not being free-riders
or partial free-riders, but also on the amount of data they ac-
tually upload/download. Importantly, our results show that, by
imposing constraints on participating peers, we can successfully
deter free-riders.
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